
Towards a RESTful Service Ecosystem
Perspectives and Challenges

Markus Lanthaler
1

1
 Institute for Information Systems and Computer Media

Graz University of Technology

Graz, Austria

Christian Gütl
1,2

2
 School of Information Systems

Curtin University of Technology

Perth, Australia

Abstract—Average information workers spend most of their time

for searching, analyzing, reformatting and consolidating infor-

mation. The recent advent of service-oriented architectures

(SOA) built on Web services is a first attempt to streamline

respectively automate those tasks in order to increase produc-

tivity. SOAP-based services work well within a company and are

thus mainly used to for the integration of legacy systems which

have not been built to be Web-friendly or to make new systems

more flexible for changing requirements in business ecosystems.

Nevertheless, the utopian promise of uniform service interface

standards, metadata and universal service registries, in the form

of the SOAP, WSDL and UDDI standards have proven elusive.

Instead, for Internet-scale applications, lightweight REST-based

architectures which gained a lot of momentum recently provide a

number of important advantages such as better scalability,

reliability and visibility and are thus the preferred choice for

Internet-scale applications. Despite the foreseeable potential, the

increasing interest on and growing acceptance of lightweight ser-

vices, there are still problems on formal describing, finding and

orchestrating services as well as a lack of a holistic framework

covering the entire service lifecycle. This paper focuses on an

extensive survey comparing the traditional SOAP-based archi-

tecture to the emergent lightweight REST-based architectural

style as a first step towards a framework proposal.

Index Terms—Autonomic computing, Internet, Web services,

semantic Web services, service discovery, service composition,

service orchestration and choreography, Web 2.0, Web 3.0

I. INTRODUCTION

The World Wide Web has liberated information from its
physical containers such as books, journals and newspapers
allowing information to flow faster and more independently.
This led to tremendous progress in information creation, distri-
bution and usage which resulted in huge productivity gains.
Nevertheless, according to Feldman et al. [1], average infor-
mation workers spend roughly a quarter of their time searching
for information and another quarter analyzing it. Every week
they waste about 3.8 hours reformatting from multiple formats
into one document format and about 3.5 hours searching for
information never found causing costs of millions of dollars.
This affects application domains such as decision support,
knowledge acquisition and management activities as well as
learning and training settings. A great part of this problem is
due to the fact that, while most information is already stored in
a structured form inside databases on the Web, it is still
flattened out for presentation, segmented into ―pages‖, and
aggregated into separate ―sites‖; many services remain isolated

islands in the huge information sea of the Web. So, just as the
first automobiles looked like horse carriages, reflecting out-
dated assumptions about the way they would be used, infor-
mation resources on the Web still resemble their physical
predecessors [2].

The recent advent of service-oriented architectures (SOA)
built on Web services is a first attempt to streamline or auto-
mate business processes in order to increase productivity. More
and more organizations offer access to their information
through Web services. By composing different Web services, it
is even possible to create value-added services or new appli-
cations to provide functionalities that were not available or
defined at design time.

But, while most current and previous research efforts
mostly concentrate on SOAP-based services, the utopian
promise of uniform service interface standards, metadata and
universal service registries, in the form of the SOAP, WSDL
and UDDI standards has proven elusive. Thus, the usage of
SOAP-based services is traditionally mainly limited to the inte-
gration of legacy systems which have not been built to be Web-
friendly or to make new systems more flexible for changing
business processes within a company which helps organi-
zations to cope with changing requirements in business
ecosystems. Instead of SOAP-based services with their high
perceived complexity, prominent Web service providers like
Microsoft, Google, Yahoo, Amazon, Sun and eBay have opted
to use lightweight protocols like RSS and ATOM to push data
to consumers, while exposing their service provisions as simple
and lightweight REST-style APIs. Some of them even started
to retire their SOAP-based services and replace them with
REST services [3].

Lightweight services are easier to consume, are more often
used to provide services across organizational borders and are
interesting for community-driven services. REST is an archi-
tectural style that specifies constraints to enhance performance,
scalability, and resource abstraction within distributed hyper-
media systems. It provides the same interface to access all re-
sources. Indeed the whole Web is a REST-based system and
can be seen as an expansive application framework that proves
REST’s constraints and effectiveness [4]. By providing data in
a form easy to process, tedious and error prone tasks such as
consolidating and reformatting data which cost millions of
dollars [1] could be completely eliminated or at least
minimized.

4th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2010)
© 2010 IEEE.

209

Despite the foreseeable potential, the increasing interest on
and growing acceptance of lightweight services, there are still
problems on formal describing, finding and orchestrating as
well as trust and reliability issues in creating and providing
business services. Research and initiatives on standardizations
of these issues have already started but no agreed standards
exist yet. There is also a lack of a holistic framework for
practical usage of lightweight Web services which should
cover the entire lifecycle beginning at the description, the
semantic annotation, the application, the discovery of suitable
services and finally the composition of services to build
mashups.

The lack of such a holistic framework and practical
guidelines for usage applicable to various application domains
and scenarios motivated us to focus on lightweight services in
order to research aspects of a holistic REST-based framework.
This paper in particular focuses on a first survey by comparing
heavyweight and lightweight approaches on all aspects of the
aforementioned lifecycle as a first step towards a framework
proposal.

To this end, the remainder of this paper is organized as
follow. Section II discusses the pros and cons of service inter-
face descriptions and presents the latest proposals for REST-
based services. Section III presents different approaches for the
semantic annotation of the service’s descriptions as well as
their input and output data and shows how a parallel to the
SOAP stack can be built for REST-based services. Section IV
covers the usage of Web services and shows areas where
REST-based services are more powerful and why they are
Web-friendlier. Section V addresses service discovery and
composition. Finally, the concluding remarks are presented in
section VI.

II. SERVICE INTERFACE DESCRIPTION

In order for two (or more) systems to communicate, there
has to be an agreement or contract on the used interfaces and
data formats. In the traditional Remote Procedure Call (RPC)
model, where all differences between local and distributed
computing are hidden, usually an Interface Description
Language (IDL) is used to specify those interfaces. The data
types that such an IDL offers are abstractions of the data types
found in actual programming languages to allow interop-
erability between different platforms. That way, automatic code
generation on both, the client and the server side, are possible.

SOAP, the successor of XML-RPC [5], is based on exactly
the same model. SOAP service interfaces are usually defined
by a Web Service Description Language (WSDL) file to
describe the methods with their expected inputs and outputs
and XML Schema(s) to describe the schemas for those inputs
and outputs. Given that those documents are machine-readable,
it is possible to automatically generate code stubs which aim to
improve the developer’s productivity. But sometimes this
causes several interoperability problems due to the impedance
mismatch between XML Schemas (XSD) and object oriented
programming constructs (O/X impedance mismatch). The
XML Schema language has a number of type system constructs
which simply do not exist in commonly used object oriented
programming languages such as, e.g., Java [5]. In consequence,
this leads to interoperability problems because each SOAP

stack has its own way of mapping the various XSD type system
constructs to objects in the target platform's programming
language and vice versa.

In contrast, REST-based services are almost exclusively de-
scribed by human-readable documentation describing the
URLs and the data expected as input and as output, even
though it would be possible to describe REST services with
WSDL 2.0 [6], [7]. This obviously renders automatic code
generation or automatic validation of requests and responses
impossible.

There have been very controversial discussions whether
REST even needs machine-readable interface descriptions.
Good APIs expose ―hackable‖ URLs [8] which at least human
users can easily understand and in consequence modify parts of
if to retrieve the desired content. Another fact is that, due to
REST’s uniform interface [4], the interface variability is almost
eliminated. REST uses the HTTP verbs to apply CRUD
operations (Create, Read, Update and Delete) to resources de-
fined by their URI. What most parties agree on is that some-
thing simpler than WSDL is needed, or, to say it with Norman
Walsh’s words: ―I think something dramatically simpler than
WSDL could get the job done most of the time. We know the
hard things are possible, we just have to make the easy things
easy.‖ [9]

A natural way to describe the interface of a REST service is
to use HTML containing hyperlinks and forms—with HTML5
forms also the HTTP-methods PUT and DELETE will get
supported [10]. The drawback of that solution is the inflexi-
bility for the request data type and the lack of a definition of
possible response data types.

To solve those issues, different approaches have been pro-
posed. Most of them, such as WRDL [11], NSDL [12], SMEX-
D [13], Resedel [14], RSWS [15] and WDL [16] were more or
less ad hoc inventions designed to solve particular problems
and haven’t been updated since some years. The most recent,
respectively only regularly updated proposals are, to our best
knowledge, hRESTS (HTML for RESTful Services) [17] and
WADL (Web Application Description Language) [18].

WADL’s approach is closely related to WSDL by gener-
ating a monolithic file containing all the information about the
service interface while the idea of hRESTS is to enrich the,
mostly already existent, human-readable documentation with
so called microformats [19] to make it machine-processable.
Both offer, as most of the other mentioned proposals, a rela-
tively straightforward solution to describe the resources and the
supported methods; however, there is some lack of support
when describing the used data schemas. WADL relies on
Internet Media Types and optional XML or RelaxNG schemas
in contrast to hRESTS that, apart from a potential label, does
not provide any support for further machine-readable infor-
mation about the inputs and outputs. Extensions like SA-
REST [20] and MicroWSMO [21] address this issue. More
information can be found in section III.

The use of Internet Media Types has the benefit that the
restriction that the payload has to be an XML document is re-
moved. One of the fundamental design decisions for SOAP-
based Web services was that all exchanged data must either be

4th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2010)
© 2010 IEEE.

210

an XML document or modelled as an XML document. This led
to the development of numerous schemes like SOAP with
Attachments (SwA), Direct Internet Message Encapsulation
(DIME), WS-Attachments, Message Transmission
Optimization Mechanism (MTOM) and XML-binary Opti-
mized Packaging (XOP) to support the transport of non-XML
data.

Even though interface description languages such as
hRESTS and WADL allow automatic code generation, is has to
be made sure that developers do not fall in the ―RPC trap‖.
Developers should at any point be aware whether local or
remote resources are accessed in order to threat the differences
accordingly; otherwise there is an imminent danger of signifi-
cantly reduced scale, greater client-server coupling and more
difficult system modification and maintenance ([22]-[24]).

III. SEMANTIC ANNOTATION

Most of the time, the syntactic description of a service’s
interface is not enough. Indeed, two services can have the same
syntactic definition but perform significantly different func-
tions. Thus, also the semantics of the data and the behaviour of
the service have to be documented and understood. This is nor-
mally done in the form of a textual description which is, hope-
fully, easily understandable by a human being. Machines, on
the other hand, have huge problems to understand such a docu-
ment and cannot extract enough information to use such a
service in a semantic correct way automatically. To address
this problem the services have to be annotated semantically; the
resulting service is called a Semantic Web Service (SWS) or a
Semantic RESTful Service (SRS). Those supplemental se-
mantic descriptions of the service’s properties can in conse-
quence lead to higher level of automation for tasks like dis-
covery, negotiation, composition and invocation.

There are basically four types of service semantics: 1) func-
tional semantics describing what the services does;
2) behavioural semantics defining how a client talks to the
service; 3) information model semantics specifying the ex-
changed data (incl. lifting/lowering to the grounding schema,
i.e., the data structure of the ontology); and 4) non-functional

descriptions like policies, QoS, price, location and more.
WSMO-Lite [25], e.g., is one of the ontologies specifying all of
the above mentioned aspects of service semantics.

In SOAP-based services semantic annotation is now, after
number of efforts including OWL-S [26], WSMO [27] and
WSDL-S [28], preferably addressed by the W3C recommen-
dation Semantic Annotations for WSDL and XML Schema
(SAWSDL) [29]. SAWSDL defines how to add semantic anno-
tations to various parts of a WSDL document such as inputs,
outputs, interfaces and operations.

However, SAWSDL does not specify a language for repre-
senting the semantic models. Instead, it just defines how
semantic annotation is accomplished using references to
semantic models, e.g. ontologies by providing three new exten-
sibility attributes to WSDL and XML Schema elements. A
summary of the extension attributes defined by SAWSDL is
given below (taken from [29]):

 An extension attribute, named modelReference, to
specify the association between a WSDL or XML
Schema component and a concept in some semantic
model. It is used to annotate XML Schema type defini-
tions, element declarations, and attribute declarations
as well as WSDL interfaces, operations, and faults.

 Two extension attributes, named liftingSchema-
Mapping and loweringSchemaMapping, that are added
to XML Schema element declarations and type
definitions for specifying mappings between semantic
data and XML.

SAWSDL allows multiple semantic annotations to be asso-
ciated with WSDL elements. Both schema mappings and
model references can contain multiple pointers. Multiple
schema mappings are interpreted as alternatives whereas multi-
ple model references all apply. SAWSDL does not specify any
other relationship between them [29].

REST-based services described by hRESTS, on the other
hand, can be semantically annotated by proposals like SA-
REST [20] and MicroWSMO [21], WADL-described services

SAWSDL

WSDL hRESTS WADL

MicroWSMO SA-REST SBWS

Ontology, e.g. WSMO-Lite

Service interface description

Semantic annotation

extends extends extends

annotations point to

Figure 1. Comparing the SOAP- and REST-based Web service stack.

4th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2010)
© 2010 IEEE.

211

with, e.g., SBWS [30] and REST-based services defined by
WSDL 2.0 can be directly annotated with SAWSDL. The
MicroWSMO/SA-REST microformat as well as the SBWS
approach adds SAWSDL-like annotations to hRESTS- respec-
tively WADL-based service descriptions. In effect, this builds a
parallel to the stack of WSDL and SAWSDL for REST-based
services, as shown in Figure 1, and can thus be used to inte-
grate REST-based services with WSDL-based ones. It is
important to point out that, since both MicroWSMO/SA-REST
and SAWSDL can apply WSMO-Lite service semantics,
REST-based services can be integrated with WSDL-based
ones [31]. Therefore, tasks such as discovery, composition and
mediation can be performed completely independently from
the underlying Web service technology.

REST’s uniform interface makes it a Web-friendly archi-
tecture. More specifically, its ―identification of resources‖
constraint, which specifies that every resource has to be
addressable, makes REST a natural fit for the vision of a
Semantic Web [32] and creates a network of Linked Data [33];
no parallel exists for SOAP’s remote method invocation. It
follows that REST-based Web services are an ideal carrier of
semantic data and would even provide the additional benefit of
resource resolvability in human-readable HTML [30].

For both REST- [34] and WSDL-based [35] Web services
there exist tools which provide developers support for anno-
tating Web services semantically.

IV. APPLICATION

Even though many successful distributed systems have
been built on RPC and RPC-oriented technologies such as
SOAP it is known for quite some time [22] that this approach is
flawed because it ignores the differences between local and
remote computing. The major differences concern the areas of
latency, memory access, partial failure and concurrency as
described in detail in [22]. In Internet-scale systems interme-
diaries for caching, filtering, monitoring or, e.g., logging are
―must haves‖ to ensure good performance, scalability and
maintainability.

SOAP-based systems usually don’t support such interme-
diaries directly due to their Web-unfriendly architecture
abusing HTTP as a pure transport protocol while it is in fact an
application protocol. In SOAP, e.g., data is often retrieved by
POSTing a SOAP-request to the service which then returns the
desired data. This breaks intermediaries that serve as proxies or
caches which typically perform their functions based on the
standard semantics associated with the HTTP verbs and
headers in the messages flowing through them. In contrast,
Fielding [4] made meticulously chosen trade-offs for REST
which address exactly those issues and allow building exten-
sible, manageable, maintainable and loosely-coupled dis-
tributed systems at Internet-scale. In REST caching, e.g., is
relatively straightforward: clients retrieve data by (conditional)
GET requests and servers can specify the cache validity dura-
tion by HTTP Cache-Control headers. This clearly follows
HTTP’s semantics and doesn’t break any intermediaries
relying on those semantics. The fact that the whole Web—the
largest and most successful distributed system—is built on the
REST principles should be evidence enough of REST’s
superior scalability and interoperability.

Another important aspect which eases tasks like monitoring
and logging is that REST doesn’t use implicit state transitions.
Each request from client to server must contain all the infor-
mation necessary for the server to understand the request; a
client cannot take advantage of any stored context on the
server. The server of course knows about the state of its
resources but doesn’t keep track of individual client sessions,
so all session state is kept entirely on the client [4]. The state is
represented by a set of hyperlinked resources, or, to say it with
Fielding’s words: ―[REST uses] hypermedia as the engine of
application state‖ [4]. This greatly improves reliability and
scalability as well as the before mentioned visibility of
services. Since all the needed state information is contained in
every request, recovery from partial failures [22] is a lot easier
which improves reliability. Scalability, on the other hand, is
improved because not having to store state between requests
allows the server to quickly free resources, and further sim-
plifies implementation because the server doesn’t have to
manage resource usage across requests [4]. The disadvantage
of this statelessness is that the network performance might be
decreased since all the state information has to be transferred in
every request and can’t be left on the server.

In contrast, SOAP-based systems most of the time rely
heavily on implicit state-control flow control. The allowed
messages and how they have to be interpreted depends on what
messages have been exchanged before and thus in which im-
plicit state the system is. Third parties or intermediaries trying
to interpret the conversation need the full state transition table
and the initial state to understand the communication. This in
turn implies that states and transitions between them have to
identifiable which in turn implies the need for (complex)
technologies like Web Services Business Process Execution
Language (WS-BPEL) [36].

SOAP’s before described opaqueness leads to some severe
security problems in enterprise scenarios. Since SOAP runs on
top of HTTP it ―goes through firewalls like a knife through
butter‖, according to Tim Bray (an editor of the XML specifi-
cation) and it is difficult to inspect and filter the transported
data. So, e.g., SOAP has several different ways of encoding
and transporting binary data and there is nothing which speci-
fies if a method just reads data or if it creates/modifies/deletes
data. REST, if implemented correctly, on the other hand,
clearly specifies the type of the method by the used HTTP
verb. Such architecture makes it trivial for an administrator to
declare parts of his network (which, as an additional advantage,
can be clearly specified by URI patterns) as ―read only‖ by
filtering requests based on the used HTTP verb.

Message confidentiality and integrity are not to be forgotten
when speaking about security. While specifications such as
WS-Security [37] address exactly those issues for SOAP-based
services, REST-based services typically fall back on HTTPS.
The problem of HTTPS is that in large data centres, SSL is
typically terminated at the edge of the network—at the firewall,
load balancer or router. This opens the door for man-in-the-
middle attacks [38], thus additional measures have to be taken
at the data layer to provide true end-to-end security, just as
SOAP-based services do.

4th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2010)
© 2010 IEEE.

212

On the data layer, SOAP-based services rely on the auto-
matic mapping between the exchanged XML data and the
object oriented constructs of the used programming languages.
As already mentioned in section II this mapping is brittle [5]
and results all too often in severe interoperability problems. In
REST, however, the developer usually deals directly with the
exchanged data which is often XML, but includes also other
formats such as, e.g., JSON. Since REST heavily relies on
standard Internet Media Types often special libraries for
handling those common data formats exist. When no library
exists, the developer has to deal directly with the (XML) data.
Extensions for common languages such as Cω or LINQ
(Language Integrated Query) for C# or E4X (ECMAScript for
XML) for JavaScript ease the data handling enormously and
avoid the inherent O/X impedance mismatch (some details
about how Cω avoids the impedance mismatch can be found
in [24]).

V. SERVICE DISCOVERY AND COMPOSITION

Before a Web service can be used it has to be found. In
traditional SOAP-based services this is usually done by a
technology called Universal Description, Discovery and
Integration (UDDI) [39]. A UDDI registry stores information
about Web service providers, the Web services they make
available and the technical interfaces which can be used to
access those services as well as metadata about those
services. Another, less known, technology used in the SOAP
context is the Web Services Inspection Language (WS-
Inspection) [40] developed by Microsoft and IBM. In contrast
to UDDI, which follows a centralized approach and is thus
most often used within companies, WS-Inspection relies on a
completely decentralized, distributed model for providing
service-related information. Each service provider places WS-
Inspection documents with fixed names (“inspection.wsil”) on
common entry points, e.g., the company’s website root
directory. Obviously, WS-Inspection is not used that much as a
simple Google search

1
 reveals just 26 hits.

For REST-based services no similar technologies exist. The
usual practice to find a REST-based service is to go to a
website like ProgrammableWeb

2
 which collects and cate-

gorizes services. If REST services would be specified by
technologies such as hRESTS it would be rather trivial to write
(or augment) crawlers to index REST-based services.
Additionally, if the service description would be augmented by
semantic annotations such as SA-REST/MicroWSMO it would
be even possible to use that semantic data for service dis-
covery. The same mechanism could be used for SOAP-based
services in conjunction with (semantically annotated) WS-
Inspection.

Since both, REST- as well as SOAP-based services, can be
described by the same semantic annotation (as described in
section III), all previous work and research for semantic
discovery could be reused independently of the used
technology. Lumina [41], a semantic discovery tool that is built
on top of UDDI, e.g., is one of these tools for SAWSDL.

1 Search for WS-Inspection documents using Google's inurl operator:

http://www.google.com/search?q=inurl:inspection.wsil&filter=0
2 http://www.programmableweb.com/

After finding suitable services, they are often combined to
so called mashups. A common and still open problem is data
mediation/integration. Typically a developer implements a spe-
cial mediation layer, which often represents the major part of
the needed code, to translate the data formats between different
services. Also here, semantic annotation enables further
automation.

One approach is to specify, additionally to the used ontol-
ogy concept, a lifting and lowering schema. Those schemas are
then used to translate the service’s native data format to the
data structure of the ontology, the so called grounding schema.
This clearly adds another abstraction layer and is a scalable
solution because each service provider has to provide only one
lifting/lowering schema pair in contrast to the usual way which
demands a mapping to all other services that may want to use
this service in the future. By using those abstractions, semantic
mashups (termed as smashups) could be generated completely
automatically and interesting new approaches, such as querying
data from different services by SPARQL queries as described
in [30] could become generally possible. But unfortunately it is
not always possible to define a complete mapping to the
grounding schema; as ontologies grow in richness and detail
the frequency with which data mapping cannot be onto will
surely go up; this needs further research.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have outlined the main differences
between SOAP- and REST-based Web services. We have
shown that REST-based services can be more scalable, reliable
and visible and are thus the preferred choice for Internet-scale
applications. On the other hand, SOAP-based services often
better fit for in-company deployments were legacy systems,
which initially have not been built to be Web-friendly, have to
be integrated with other services and systems.

However, the RESTful service landscape still suffers from
shortcomings on formal describing, finding and orchestrating
services as well as the non-existence of a holistic framework
covering the entire service lifecycle.

The root of those issues is the lack of an agreed standard to
describe a REST-based Web service. There have been numer-
ous approaches, but none gained broad support so far. While
WADL [18] seems to be the most mature one, hRESTS [17] is
in our opinion the most interesting approach. It not only
concentrates all service documentation (human- and machine-
readable) in one accessible document following therefore
strictly the Don’t Repeat Yourself (DRY) principle [42], but is
also easily discoverable by search engines and offers a unique
entry point for the service’s usage.

Nevertheless, most of the time, the syntactic description of
a service’s interface is not enough—also the semantics of the
data and the behaviour of the service have to be documented.
By using hRESTS in combination with extensions such as SA-
REST [20] and MicroWSMO [21] the textual description
addressing human users can be augmented with semantic anno-
tations which in consequence allow machines to interpret the
service documentation. In the next step all this information can
be leveraged to build powerful discovery as well as compo-
sition methods.

4th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2010)
© 2010 IEEE.

213

Despite the inherent differences between the two archi-
tectural styles, both, the traditional SOAP-based as well as the
lightweight REST-based Web service stack, can be integrated
in a vibrant service ecosystem. To this end, in future work we
plan to define and develop a holistic framework which builds
on pre-existing results and extends current research. The
framework’s aim is to provide a simplified and coherent
approach for describing, semantically annotating, finding,
using and composing services with less effort.

We plan to follow an approach which combines both the
knowledge and assistance of the crowd as well as the power of
software engineering (computer processing). Towards the pro-
posed framework research includes, but is not limited to, the
following core research topics: 1) easy service description;
2) enhanced semantic annotation; 3) scalable and reliable appli-
cation; and 4) expressiveness for service discovery and effort-
less composition of services.

REFERENCES

[1] S. Feldman, J. Duhl, J. Rahal Marobella and A. Crawford, “The Hidden
Costs of Information Work”, Mar. 2005

[2] D. Huynh, S. Mazzocchi, D. Karger, ―Piggy Bank: Experience the
Semantic Web Inside Your Web Browser‖, LNCS 3729, pp. 413-430,
Oct. 2005

[3] E. Tholomé, “A well earned retirement for the SOAP Search API”,
Retrieved: Dec. 22, 2009. Available:
http://googlecode.blogspot.com/2009/08/well-earned-retirement-for-
soap-search.html

[4] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures”, Ph.D. dissertation, Dept. Inform. Comput. Sci.,
Univ. California, Irvine, USA, 2000.

[5] S. Loughran and E. Smith, “Rethinking the Java SOAP Stack”, IEEE
Int. Conf. Web Services (ICWS) 2005, Orlando, Florida, USA,
Jul. 2005.

[6] Web Services Description Language (WSDL) Version 2.0, 2007.

[7] H. Haas, “Reconciling Web Services and REST Services”, presented at
the the 3rd IEEE European Conference on Web Services (IEEE ECOWS
2005), Växjö, Sweden, Nov. 2005.
Available: http://www.w3.org/2005/Talks/1115-hh-k-ecows/

[8] J. Nielsen. (1999, March 21). URL as UI [Online] Available:
http://www.useit.com/alertbox/990321.html

[9] N. Walsh. (2006, July 14). “WITW: WSDL: 1, Norm: 0” [Online]
Available: http://norman.walsh.name/2005/02/24/wsdl

[10] HTML5, Editor's Draft 21 December 2009, Revision 1.3556 Available:
http://www.w3.org/html/wg/html5/

[11] P. Prescod. (2002, August 1). “Web Resource Description Language
(„Word-dul‟)” [Online] Available:
http://www.prescod.net/rest/wrdl/wrdl.html

[12] N. Walsh. (2005, June 22). “WITW: NSDL” [Online] Available:
http://norman.walsh.name/2005/03/12/nsdl

[13] T. Bray (2005, May 3). “SMEX-D (Simple Message Exchange
Descriptor)” [Online] Available:
http://www.tbray.org/ongoing/When/200x/2005/05/03/SMEX-D

[14] J. Cowan. (2005, May 9). “Resedel” [Online] Available:
http://recycledknowledge.blogspot.com/2005/05/resedel.html

[15] R. Salz. (2003, October 14). “Really Simple Web Service Descriptions”
[Online] Available:
http://webservices.xml.com/pub/a/ws/2003/10/14/salz.html

[16] D. Orchard, “Web Description Language (WDL)”, Retrieved: Jan. 7,
2010 [Online]Available: http://www.pacificspirit.com/Authoring/WDL

[17] J. Kopecký, K. Gomadam and T. Vitvar, “hRESTS: an HTML
Microformat for Describing RESTfulWeb Services”, in Proc. 2008
IEEE/WIC/ACM Int. Conf. Web Intelligence and Intelligent Agent
Technology, vol. 1, pp. 619-625.

[18] M. J. Hadley, ―Web Application Description Language (WADL)‖,
Nov. 2006. Available: https://wadl.dev.java.net/wadl20061109.pdf

[19] R. Khare and T. Çelik, ―Microformats: A Pragmatic Path to the
Semantic Web‖, CommerceNet Labs, Palo Alto, CA, USA,
Tech. Rep. 06-01, Jan. 2006. Available:
http://wiki.commerce.net/images/e/ea/CN-TR-06-01.pdf

[20] A. P. Sheth, K. Gomadam and J. Lathem, “SA-REST: Semantically
Interoperable and Easier-to-Use Services and Mashups”, IEEE Internet
Computing 11 (6), pp. 84-87, Nov./Dec. 2007

[21] J. Kopecký and T. Vitvar, “D38v0.1 MicroWSMO: Semantic
Description of RESTful Services”, Feb. 2008. Available:
http://wsmo.org/TR/d38/v0.1/20080219/d38v01_20080219.pdf

[22] J. Waldo, G. Wyant, A. Wollrath and S. Kendall, ―A Note on Distributed
Computing‖, Sun Microsystems Labs., Mountain View, CA, USA,
Tech. Rep. SMLI TR-94-29, Nov. 1994.

[23] S. Vinoski, ―Toward Integration—Demystifying RESTful Data
Coupling‖, IEEE Internet. Comput., vol. 12, no. 2, pp. 87-
90, Mar. 2008.

[24] S. Vinoski, ―RPC Under Fire‖, IEEE Internet. Comput., vol. 9, no. 5,
pp. 93-95, Sept. 2008.

[25] T. Vitvar, J. Kopecký, J. Viskova and D. Fensel, “WSMO-Lite
Annotations for Web Services”, LNCS 5021, pp. 674–689, 2008

[26] OWL-S: Semantic Markup for Web Services, W3C Member Submission
22 November 2004. Available: http://www.w3.org/Submission/OWL-S/

[27] Web Service Modeling Ontology (WSMO), WSMO Final Draft 21
October 2006. Available: http://www.wsmo.org/TR/d2/v1.3/

[28] Web Service Semantics - WSDL-S, W3C Member Submission 7
November 2005. Available: http://www.w3.org/Submission/WSDL-S/

[29] Semantic Annotations for WSDL and XML Schema (SAWSDL), W3C
Recommendation, 2007.

[30] R. Battle and E. Benson, ―Bridging the semantic Web and Web 2.0 with
Representational State Transfer (REST)‖, J. Web Semantics, vol. 6,
no. 1, pp. 61-69, Feb. 2008.

[31] M. Maleshkova, J. Kopecký and C. Pedrinaci, “Adapting SAWSDL for
Semantic Annotations of RESTful Services”, LNCS 5872, pp. 917-926,
2009

[32] T. Berners-Lee, J. Hendler and O. Lassila, ―The Semantic Web‖,
Scientific Amer., vol. 284, no. 5, pp. 34-43, May 2001.

[33] C. Bizer, T. Heath and T. Berners-Lee, ―Linked Data - The Story So
Far‖, Int. J. Semantic Web Inform. Syst. (IJSWIS), to be published.

[34] M. Maleshkova, C. Pedrinaci and J. Domingue, ―Semantically
Annotating RESTful Services with SWEET‖, presented at the 3rd Int.
Workshop on Service Matchmaking and Resource Retrieval in the
Semantic Web (SMR²) at the 8th Int. Semantic Web Conf., Washington
D.C., USA, Oct. 2009.

[35] A. Heß, E. Johnston and N. Kushmerick, “ASSAM: A Tool for Semi-
automatically Annotating Semantic Web Services”, LNCS 3298,
pp. 320-334, 2004

[36] Web Services Business Process Execution Language Version 2.0,
OASIS Standard, 2007.

[37] WS-Security Core Specification 1.1, OASIS Standard, 2006.

[38] G. Peterson. (2007, Feb. 28). CAPEC-57: Utilizing REST's Trust in the
System Resource to Register Man in the Middle [Online] Available:
http://capec.mitre.org/data/definitions/57.html

[39] Universal Description, Discovery and Integration (UDDI) Version 3.0.1,
OASIS Standard, 2003.

[40] Web Services Inspection Language (WS-Inspection), 2001..Available:
http://www.ibm.com/developerworks/library/specification/ws-wsilspec/

[41] Lumina - Semantic Web Service Discovery, Dep. Comput. Sci., Univ.
Georgia, USA.. Available: http://lsdis.cs.uga.edu/projects/meteor-
s/downloads/Lumina

[42] A. Hunt and D. Thomas, ―The Evils of Duplication‖, in The Pragmatic
Programmer: From Journeyman to Master, Old Tappan, NJ: Addison-
Wesley Prof., 1999, ch. 7, pp. 26-33.

4th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2010)
© 2010 IEEE.

214

